\(sin(3 \pi / 2) \) = ________ |
\(sin(60^\text{o}) \) = ________ |
\(tan(60^\text{o}) \) = ________ |
\(cos(3 \pi / 2) \) = ________ |
\(tan(270^\text{o}) \) = ________ |
\(cos(\pi / 3) \) = ________ |
\(cos(30^\text{o}) \) = ________ |
\(sin(0) \) = ________ |
\(cos(\pi / 2) \) = ________ |
\(cos(\pi) \) = ________ |
\(tan(0) \) = ________ |
\(tan(\pi / 3) \) = ________ |
\(sin(270^\text{o}) \) = ________ |
\(tan(180^\text{o}) \) = ________ |
\(sin(3 \pi / 4) \) = ________ |
\(sin(150^\text{o}) \) = ________ |
\(tan(45^\text{o}) \) = ________ |
\(tan(\pi / 2) \) = ________ |
\(sin(\pi / 6) \) = ________ |
\(tan(\pi / 4) \) = ________ |
\(sin(90^\text{o}) \) = ________ |
\(cos(0) \) = ________ |
\(sin(\pi / 3) \) = ________ |
\(cos(60^\text{o}) \) = ________ |
\(cos(135^\text{o}) \) = ________ |
\(sin(\pi / 2) \) = ________ |
\(sin(135^\text{o}) \) = ________ |
\(tan(135^\text{o}) \) = ________ |
\(sin(3 \pi / 2) = -1\) |
\(sin(60^\text{o}) = \sqrt{3} / 2\) |
\(tan(60^\text{o}) = \sqrt{3}\) |
\(cos(3 \pi / 2) = 0\) |
\(tan(270^\text{o}) = undefined\) |
\(cos(\pi / 3) = 1/2\) |
\(cos(30^\text{o}) = \sqrt{3} / 2\) |
\(sin(0) = 0\) |
\(cos(\pi / 2) = 0\) |
\(cos(\pi) = -1\) |
\(tan(0) = 0\) |
\(tan(\pi / 3) = \sqrt{3}\) |
\(sin(270^\text{o}) = -1\) |
\(tan(180^\text{o}) = 0\) |
\(sin(3 \pi / 4) = \sqrt{2} / 2\) |
\(sin(150^\text{o}) = 1/2\) |
\(tan(45^\text{o}) = 1\) |
\(tan(\pi / 2) = undefined\) |
\(sin(\pi / 6) = 1/2\) |
\(tan(\pi / 4) = 1\) |
\(sin(90^\text{o}) = 1\) |
\(cos(0) = 1\) |
\(sin(\pi / 3) = \sqrt{3} / 2\) |
\(cos(60^\text{o}) = 1/2\) |
\(cos(135^\text{o}) = -\sqrt{2} / 2\) |
\(sin(\pi / 2) = 1\) |
\(sin(135^\text{o}) = \sqrt{2} / 2\) |
\(tan(135^\text{o}) = -1\) |
![]() |
||
![]() |