Math Problems

MathematicsPrecalculusQuadratic Equations → Finding Vertex of Parabola

Find y-intercepts of a given quadratic equation

## Questions

 $$y = 3 x^2 + 12 x + 10$$ $$y = x^2 + 6 x + 9$$ $$y = x^2 -12 x + 35$$ $$y = -2 x^2 -3$$ $$y = 3 x^2 -30 x + 76$$ $$y = -2 x^2 + 16 x -35$$ $$y = -x^2 + 6 x -11$$ $$y = x^2 + 10 x + 24$$ $$y = -2 x^2 -4 x -4$$ $$y = -2 x^2 -4 x -5$$ $$y = 2 x^2 + 4 x$$ $$y = x^2 -6 x + 7$$ $$y = 3 x^2 -36 x + 107$$ $$y = 3 x^2 -6 x + 4$$ $$y = -x^2 + 4 x -5$$ $$y = x^2 + 3$$ $$y = x^2 -4$$ $$y = -x^2 + 2 x -5$$ $$y = -2 x^2 -8 x -10$$ $$y = 2 x^2 + 16 x + 31$$ $$y = x^2 + 2 x + 2$$ $$y = x^2 + 12 x + 38$$ $$y = -2 x^2 + 12 x -15$$ $$y = x^2 + 2 x -3$$ $$y = -x^2 -10 x -22$$ $$y = 3 x^2 + 12 x + 15$$ $$y = x^2 + 2 x -1$$ $$y = x^2 -8 x + 15$$

## Answers

 $$y = 3 x^2 + 12 x + 10$$ ⇒ ($$-2, -2)$$ $$y = x^2 + 6 x + 9$$ ⇒ ($$-3, 0)$$ $$y = x^2 -12 x + 35$$ ⇒ ($$6, -1)$$ $$y = -2 x^2 -3$$ ⇒ ($$0, -3)$$ $$y = 3 x^2 -30 x + 76$$ ⇒ ($$5, 1)$$ $$y = -2 x^2 + 16 x -35$$ ⇒ ($$4, -3)$$ $$y = -x^2 + 6 x -11$$ ⇒ ($$3, -2)$$ $$y = x^2 + 10 x + 24$$ ⇒ ($$-5, -1)$$ $$y = -2 x^2 -4 x -4$$ ⇒ ($$-1, -2)$$ $$y = -2 x^2 -4 x -5$$ ⇒ ($$-1, -3)$$ $$y = 2 x^2 + 4 x$$ ⇒ ($$-1, -2)$$ $$y = x^2 -6 x + 7$$ ⇒ ($$3, -2)$$ $$y = 3 x^2 -36 x + 107$$ ⇒ ($$6, -1)$$ $$y = 3 x^2 -6 x + 4$$ ⇒ ($$1, 1)$$ $$y = -x^2 + 4 x -5$$ ⇒ ($$2, -1)$$ $$y = x^2 + 3$$ ⇒ ($$0, 3)$$ $$y = x^2 -4$$ ⇒ ($$0, -4)$$ $$y = -x^2 + 2 x -5$$ ⇒ ($$1, -4)$$ $$y = -2 x^2 -8 x -10$$ ⇒ ($$-2, -2)$$ $$y = 2 x^2 + 16 x + 31$$ ⇒ ($$-4, -1)$$ $$y = x^2 + 2 x + 2$$ ⇒ ($$-1, 1)$$ $$y = x^2 + 12 x + 38$$ ⇒ ($$-6, 2)$$ $$y = -2 x^2 + 12 x -15$$ ⇒ ($$3, 3)$$ $$y = x^2 + 2 x -3$$ ⇒ ($$-1, -4)$$ $$y = -x^2 -10 x -22$$ ⇒ ($$-5, 3)$$ $$y = 3 x^2 + 12 x + 15$$ ⇒ ($$-2, 3)$$ $$y = x^2 + 2 x -1$$ ⇒ ($$-1, -2)$$ $$y = x^2 -8 x + 15$$ ⇒ ($$4, -1)$$
Problem Set Filters:

### Direction

Reshuffle Questions
Get Links to Questions