Math Problems

MathematicsPrecalculusQuadratic Equations → Finding Vertex of Parabola

Find y-intercepts of a given quadratic equation

## Questions

 $$y = 3 x^2 + 36 x + 111$$ $$y = x^2 -12 x + 39$$ $$y = -2 x^2 + 20 x -52$$ $$y = 3 x^2 -18 x + 23$$ $$y = 2 x^2 + 24 x + 74$$ $$y = x^2 + 2 x$$ $$y = 3 x^2 -30 x + 73$$ $$y = -x^2 -4 x -3$$ $$y = x^2 + 12 x + 35$$ $$y = -2 x^2 -4$$ $$y = x^2 -12 x + 32$$ $$y = x^2 + 8 x + 14$$ $$y = -x^2 -3$$ $$y = -2 x^2 + 20 x -49$$ $$y = 3 x^2 + 12 x + 12$$ $$y = x^2 -4 x + 6$$ $$y = -x^2 -8 x -15$$ $$y = -2 x^2 -12 x -21$$ $$y = 3 x^2 + 24 x + 50$$ $$y = 2 x^2 -4 x -2$$ $$y = x^2 + 8 x + 13$$ $$y = -x^2 + 10 x -26$$ $$y = x^2 + 2 x + 1$$ $$y = -x^2 + 12 x -39$$ $$y = x^2 + 4 x + 4$$ $$y = 2 x^2 + 16 x + 28$$ $$y = -x^2 -12 x -39$$ $$y = 3 x^2 -6 x + 3$$

 $$y = 3 x^2 + 36 x + 111$$ ⇒ ($$-6, 3)$$ $$y = x^2 -12 x + 39$$ ⇒ ($$6, 3)$$ $$y = -2 x^2 + 20 x -52$$ ⇒ ($$5, -2)$$ $$y = 3 x^2 -18 x + 23$$ ⇒ ($$3, -4)$$ $$y = 2 x^2 + 24 x + 74$$ ⇒ ($$-6, 2)$$ $$y = x^2 + 2 x$$ ⇒ ($$-1, -1)$$ $$y = 3 x^2 -30 x + 73$$ ⇒ ($$5, -2)$$ $$y = -x^2 -4 x -3$$ ⇒ ($$-2, 1)$$ $$y = x^2 + 12 x + 35$$ ⇒ ($$-6, -1)$$ $$y = -2 x^2 -4$$ ⇒ ($$0, -4)$$ $$y = x^2 -12 x + 32$$ ⇒ ($$6, -4)$$ $$y = x^2 + 8 x + 14$$ ⇒ ($$-4, -2)$$ $$y = -x^2 -3$$ ⇒ ($$0, -3)$$ $$y = -2 x^2 + 20 x -49$$ ⇒ ($$5, 1)$$ $$y = 3 x^2 + 12 x + 12$$ ⇒ ($$-2, 0)$$ $$y = x^2 -4 x + 6$$ ⇒ ($$2, 2)$$ $$y = -x^2 -8 x -15$$ ⇒ ($$-4, 1)$$ $$y = -2 x^2 -12 x -21$$ ⇒ ($$-3, -3)$$ $$y = 3 x^2 + 24 x + 50$$ ⇒ ($$-4, 2)$$ $$y = 2 x^2 -4 x -2$$ ⇒ ($$1, -4)$$ $$y = x^2 + 8 x + 13$$ ⇒ ($$-4, -3)$$ $$y = -x^2 + 10 x -26$$ ⇒ ($$5, -1)$$ $$y = x^2 + 2 x + 1$$ ⇒ ($$-1, 0)$$ $$y = -x^2 + 12 x -39$$ ⇒ ($$6, -3)$$ $$y = x^2 + 4 x + 4$$ ⇒ ($$-2, 0)$$ $$y = 2 x^2 + 16 x + 28$$ ⇒ ($$-4, -4)$$ $$y = -x^2 -12 x -39$$ ⇒ ($$-6, -3)$$ $$y = 3 x^2 -6 x + 3$$ ⇒ ($$1, 0)$$