\(y = b^{6} + 64\) |
\(y = x^{4} - 9\) |
\(y = 16 x^{6} - 9\) |
\(y = 27 a^{6} - 64\) |
\(y = 64 a^{9} + 27\) |
\(y = - 27 x^{12} + y^{6}\) |
\(y = b^{4} - 16 x^{8}\) |
\(y = - 64 c^{12} + 27 y^{6}\) |
\(y = 8 a^{9} + b^{18}\) |
\(y = 16 a^{4} - 9\) |
\(y = 8 b^{6} - 27\) |
\(y = c^{6} + 27\) |
\(y = b^{6} + 27 x^{12}\) |
\(y = 64 a^{3} - 27\) |
\(y = 8 x^{9} + 1\) |
\(y = 27 c^{6} - 8\) |
\(y = 27 a^{9} - 8 b^{18}\) |
\(y = c^{4} - 4\) |
\(y = a^{9} - 64\) |
\(y = 8 a^{6} + 27 x^{12}\) |
\(y = - 4 a^{8} + b^{4}\) |
\(y = c^{6} + 1\) |
\(y = 9 x^{6} - y^{12}\) |
\(y = 16 b^{6} - y^{12}\) |
\(y = 8 x^{6} + 27\) |
\(y = - 9 c^{8} + x^{4}\) |
\(y = y^{4} - 16\) |
\(y = 27 b^{6} + 64 y^{12}\) |
\(y = b^{6} + 64 \) ⇒ \(\left(b^{2} + 4\right) \left(b^{4} - 4 b^{2} + 16\right)\) |
\(y = x^{4} - 9 \) ⇒ \(\left(x^{2} - 3\right) \left(x^{2} + 3\right)\) |
\(y = 16 x^{6} - 9 \) ⇒ \(\left(4 x^{3} - 3\right) \left(4 x^{3} + 3\right)\) |
\(y = 27 a^{6} - 64 \) ⇒ \(\left(3 a^{2} - 4\right) \left(9 a^{4} + 12 a^{2} + 16\right)\) |
\(y = 64 a^{9} + 27 \) ⇒ \(\left(4 a^{3} + 3\right) \left(16 a^{6} - 12 a^{3} + 9\right)\) |
\(y = - 27 x^{12} + y^{6} \) ⇒ \(\left(- 3 x^{4} + y^{2}\right) \left(9 x^{8} + 3 x^{4} y^{2} + y^{4}\right)\) |
\(y = b^{4} - 16 x^{8} \) ⇒ \(\left(b^{2} - 4 x^{4}\right) \left(b^{2} + 4 x^{4}\right)\) |
\(y = - 64 c^{12} + 27 y^{6} \) ⇒ \(\left(- 4 c^{4} + 3 y^{2}\right) \left(16 c^{8} + 12 c^{4} y^{2} + 9 y^{4}\right)\) |
\(y = 8 a^{9} + b^{18} \) ⇒ \(\left(2 a^{3} + b^{6}\right) \left(4 a^{6} - 2 a^{3} b^{6} + b^{12}\right)\) |
\(y = 16 a^{4} - 9 \) ⇒ \(\left(4 a^{2} - 3\right) \left(4 a^{2} + 3\right)\) |
\(y = 8 b^{6} - 27 \) ⇒ \(\left(2 b^{2} - 3\right) \left(4 b^{4} + 6 b^{2} + 9\right)\) |
\(y = c^{6} + 27 \) ⇒ \(\left(c^{2} + 3\right) \left(c^{4} - 3 c^{2} + 9\right)\) |
\(y = b^{6} + 27 x^{12} \) ⇒ \(\left(b^{2} + 3 x^{4}\right) \left(b^{4} - 3 b^{2} x^{4} + 9 x^{8}\right)\) |
\(y = 64 a^{3} - 27 \) ⇒ \(\left(4 a - 3\right) \left(16 a^{2} + 12 a + 9\right)\) |
\(y = 8 x^{9} + 1 \) ⇒ \(\left(2 x^{3} + 1\right) \left(4 x^{6} - 2 x^{3} + 1\right)\) |
\(y = 27 c^{6} - 8 \) ⇒ \(\left(3 c^{2} - 2\right) \left(9 c^{4} + 6 c^{2} + 4\right)\) |
\(y = 27 a^{9} - 8 b^{18} \) ⇒ \(\left(3 a^{3} - 2 b^{6}\right) \left(9 a^{6} + 6 a^{3} b^{6} + 4 b^{12}\right)\) |
\(y = c^{4} - 4 \) ⇒ \(\left(c^{2} - 2\right) \left(c^{2} + 2\right)\) |
\(y = a^{9} - 64 \) ⇒ \(\left(a^{3} - 4\right) \left(a^{6} + 4 a^{3} + 16\right)\) |
\(y = 8 a^{6} + 27 x^{12} \) ⇒ \(\left(2 a^{2} + 3 x^{4}\right) \left(4 a^{4} - 6 a^{2} x^{4} + 9 x^{8}\right)\) |
\(y = - 4 a^{8} + b^{4} \) ⇒ \(\left(- 2 a^{4} + b^{2}\right) \left(2 a^{4} + b^{2}\right)\) |
\(y = c^{6} + 1 \) ⇒ \(\left(c^{2} + 1\right) \left(c^{4} - c^{2} + 1\right)\) |
\(y = 9 x^{6} - y^{12} \) ⇒ \(\left(3 x^{3} - y^{6}\right) \left(3 x^{3} + y^{6}\right)\) |
\(y = 16 b^{6} - y^{12} \) ⇒ \(\left(4 b^{3} - y^{6}\right) \left(4 b^{3} + y^{6}\right)\) |
\(y = 8 x^{6} + 27 \) ⇒ \(\left(2 x^{2} + 3\right) \left(4 x^{4} - 6 x^{2} + 9\right)\) |
\(y = - 9 c^{8} + x^{4} \) ⇒ \(\left(- 3 c^{4} + x^{2}\right) \left(3 c^{4} + x^{2}\right)\) |
\(y = y^{4} - 16 \) ⇒ \(\left(y^{2} - 4\right) \left(y^{2} + 4\right)\) |
\(y = 27 b^{6} + 64 y^{12} \) ⇒ \(\left(3 b^{2} + 4 y^{4}\right) \left(9 b^{4} - 12 b^{2} y^{4} + 16 y^{8}\right)\) |
![]() |
||
![]() |